
Assumption Generation for Software Component Verification

Dimitra Giannakopoulou Corina S. Păsăreanu
RIACS/USRA Kestrel Technologies LLC

NASA Ames Research Center
Moffett Field, CA 94035-1000, USA
{dimitra, pcorina}@email.arc.nasa.gov

Howard Barringer∗

Department of Computer Science
University of Manchester

Oxford Road, Manchester, M13 9PL, UK
howard@cs.man.ac.uk

Abstract

Model checking is an automated technique that can be
used to determine whether a system satisfies certain re-
quired properties. The typical approach to verifying prop-
erties of software components is to check them for all possi-
ble environments. In reality, however, a component is only
required to satisfy properties in specific environments. Un-
less these environments are formally characterized and used
during verification (assume-guarantee paradigm), the re-
sults returned by verification can be overly pessimistic. This
work defines a framework that brings a new dimension to
model checking of software components. When checking
a component against a property, our model checking algo-
rithms return one of the following three results: the com-
ponent satisfies a property for any environment; the compo-
nent violates the property for any environment; or finally,
our algorithms generate an assumption that characterizes
exactly those environments in which the component satisfies
its required property. Our approach has been implemented
in the LTSA tool and has been applied to the analysis of a
NASA application.

1. Introduction

Our work is motivated by an ongoing project at NASA
Ames Research Center on the verification of autonomous
software. Autonomous software involves complex concur-
rent behaviours for reacting to external stimuli without hu-
man intervention. Extensive verification is a pre-requisite
for the deployment of missions that involve autonomy.

Model checking is an automated verification technique
that can be used to determine whether a concurrent system
satisfies certain properties by exhaustively exploring all its
possible executions. Software model checking is typically

∗This author is most grateful for the partial support received from RI-
ACS/USRA to undertake this research whilst on leave at NASA Ames Re-
search Center.

applied to components of a larger system for several rea-
sons. For example: a software component may be embed-
ded as is the case for autonomous software; one would typ-
ically ignore the details of the operating system in which
a component operates; a system may be partially specified;
finally, given the fact that the state explosion problem [9]
is particularly acute in software systems, one realistically
needs to “divide and conquer”, that is, to break up the veri-
fication task in smaller tasks.

In order to model check a component in isolation one
needs to incorporate a model of the environment interacting
with the component. By default, this is the “most general
environment”, an environment that can invoke, in any or-
der, any action of the interface between the two, or that may
refuse any service that the component requires. We believe
that the above approach to component checking is overly
pessimistic; the underlying assumption is that the environ-
ment is free to behave as it pleases, and that the component
will satisfy the required property for any environment. A
similar observation is made by De Alfaro and Henzinger in
the context of interface compatibility checking [10, 11].

In the world of model checking, this problem has given
rise to the assume-guarantee style of reasoning [36], where
the model of the environment is restricted by assumptions
provided by the developer. This style of reasoning is typi-
cally performed in an interactive fashion. Developers first
check a component with the most general environment. If a
counterexample is returned that is unrealistic for the system
under analysis, they make several attempts at defining an as-
sumption that is strong enough to eliminate false violations,
but that also reflects appropriately the remaining system.

In this paper we propose and describe a novel framework
for model checking of components that provides more use-
ful user feedback than the usual counter-example generation
for property violations. When model checking a component
against a property, our algorithms return one of the follow-
ing three results: (i) the component satisfies the property
for any environment; (ii) the component violates the prop-
erty for any environment; or finally, (iii) an automatically

generated assumption that characterizes exactly those envi-
ronments in which the component satisfies the property.

Let us illustrate this with a small example. A multi-
threaded component uses a mutex to coordinate accesses to
a shared variable, which may also be accessed by the envi-
ronment. The requirement is that race violations should not
occur in the system. If some thread within the component
performs unprotected accesses to the variable, the require-
ment may be violated irrespective of the environment. Our
approach reports this fact, together with a counterexample
illustrating it. Now assume that all accesses to the variable
within the component are protected by the mutex. Model
checking under the most general environment would return
a violation. Our algorithms would return an assumption, re-
flecting the fact that all accesses to the shared variable by
the environment must be protected by the lock.

In fact, our approach generates the weakest environment
assumption that enables the property to hold. Therefore,
in selecting an appropriate environment for a component,
one can safely reject any environment that does not sat-
isfy the assumption generated. Assumption generation may
also be seen as a way of providing extra automated support
for assume-guarantee reasoning. Finally, for systems like
the ones we study, the environment is often unpredictable.
Some assumptions are typically made about it, but loss of
mission must be avoided even if the environment falls out-
side these assumptions. For such cases, assumptions can
be used as runtime monitors of the actual environment [20].
Monitors can generate appropriate warnings when the envi-
ronment falls outside expected behaviour and trigger special
system behaviour, if necessary.

We have implemented our approach in the Labelled
Transition Systems Analyzer (LTSA) tool [31, 30], which
provides good support for incremental system design and
verification. It implements such features as component ab-
straction and minimization that make the integration of our
approach straightforward.

The problem of assumption generation can be associated
with such problems as submodule construction, controller
synthesis and model matching. To our knowledge, such
work has not been directly applied to model checking be-
fore; the relation of our approach with these domains is
further discussed in Section 6. The remainder of the pa-
per is organized as follows. Section 2 briefly discusses the
LTSA tool and the theory that underlies our approach. It is
followed by the presentation of our approach in Section 3.
Section 4 describes our experience with analyzing the Ex-
ecutive module of an experimental Mars Rover developed
at NASA Ames. We discuss the applicability of our ap-
proach in practice and extensions that we are considering
in Section 5. Finally, Section 6 presents related work, and
Section 7 concludes the paper.

2. Background

In this section, we describe the LTSA framework in
which our approach has been introduced. We provide for-
mal definitions for those aspects of the tool that we have
used and/or modified.

2.1. The LTSA Tool

The LTSA [31, 30] is an automated tool that supports
Compositional Reachability Analysis (CRA) of a software
system based on its architecture. In general, the software
architecture of a concurrent system has a hierarchical struc-
ture [29]. CRA incrementally computes and abstracts the
behaviour of composite components based on the behaviour
of their immediate children in the hierarchy. Abstraction
consists of hiding the actions that do not belong to the inter-
face of a component, and minimizing with respect to obser-
vational equivalence [17].

The input language “FSP” of the tool is a process-algebra
style notation with Labelled Transition Systems (LTS) se-
mantics. A property is also expressed as an LTS, but with
extended semantics, and is treated as an ordinary compo-
nent during composition. Properties are combined with the
components to which they refer. They do not interfere with
system behaviour, unless they are violated. In the presence
of violations, the properties introduced may reduce the state
space of the (sub)systems analyzed.

As in our approach, the LTSA framework treats com-
ponents as open systems that may only satisfy some re-
quirements in specific contexts. By composing components
with their properties, it postpones analysis until the system
is closed, meaning that all contextual behaviour that is ap-
plicable has been provided. We extend this framework by
performing useful analysis at the component level.

The LTSA tool also features graphical display of LTSs,
interactive simulation and graphical animation of behaviour
models [32], all helpful aids in both design and verification
of system models.

2.2. Program Model

We use labelled transition systems (LTSs) to model the
behaviour of communicating components in a concurrent
system. Let Act be the universal set of observable actions,
and Actτ = Act ∪ {τ}, where τ denotes a local action
unobservable to a component’s environment. We use π to
denote a special error state, which models the fact that a
safety violation has occurred in the associated system.

A labelled transition system T is a quadruple
〈S, αT,R, s0〉, where S is a set of states, αT ⊆ Act is a set
of actions called the alphabet of T , R ⊆ S ×αT ∪{τ}×S

Mutex:

E.acquire

E.release W.release

W.acquire

01 2

Writer:

W.acquire

W.release W.exitCS

10

W.enterCS

2

Figure 1. LTSs for a Mutex and a Writer

1

E.exitCS

E.exitCS

W.exitCS

W.enterCS

0 2

π

W.exitCS

E.enterCS

W.enterCS
W.exitCS
E.enterCS

W.enterCS
E.enterCS
E.exitCS

Figure 2. Mutual exclusion property

is a transition relation and s0 ∈ S is the initial state. We use
Π to denote the LTS 〈{π},Act, ∅, π〉.

For example, Figure 1 illustrates LTSs for a Writer com-
ponent and a Mutex. In all illustrations of LTSs in this pa-
per, state 0 is the initial state. The Writer acquires the mutex
(action W.acquire), enters and subsequently exists a critical
section (W.enterCS, W.exitCS) used to model the fact that
the Writer updates some shared variable, and then releases
the mutex W.release. The Mutex component can be acquired
and released by the Writer (W.acquire, W.release) or its en-
vironment (E.acquire, E.release), but a single component
can hold it at any one time.

We call an LTS well formed if the error state π has no
outgoing transitions. We only consider well formed LTSs in
this work. An LTS T = 〈S, αT,R, s0〉 is non-deterministic
if ∃(s, a, s′), (s, a, s′′) ∈ R such that s′ �= s′′ (otherwise T
is deterministic).

A trace σ of an LTS T is a sequence of observable
actions that T can perform starting at its initial state.
For example, <W.acquire> and <W.acquire, W.enterCS,
W.exitCS> are both traces of the Writer component of Fig-
ure 1. The set of traces of T is denoted as Tr(T). For
A ⊆ Act, we use σ � A to denote the trace obtained by
removing from σ all occurrences of actions a �∈ A. We de-
note as errTr(T) the set of traces that lead to the error state
π, which we call error traces of T .

Operators

In the following, we provide semantics for the operators de-
fined on LTSs that are used in our work. Although we pro-
vide transitional semantics in a typical process algebra style,
our aim here is not to define an algebra.

Let T = 〈S, αT,R, s0〉 and T ′ = 〈S′, αT ′, R′, s′0〉. We
say that T transits into T ′ with action a, denoted T

a−→ T ′,
iff (s0, a, s′0) ∈ R and: either αT = αT ′ and R = R′ for
s′0 �= π, or, in the special case where s′0 = π, T ′ = Π.

The interface operator ↑ is used to make unobservable
those actions in the LTS of a component that are not part of
its interface. Formally, given an LTS T and a set of observ-
able actions A ⊆ Act, T ↑ A is defined as follows. For
T = Π, T ↑ A = Π. For T �= Π, T ↑ A is an LTS with
the same set of states and initial state as T . The alphabet of
T ↑ A is αT ∩A, and its transition relation is described by
the following rules:

T
a−→ T ′, a ∈ A

T ↑ A a−→ T ′ ↑ A
T

a−→ T ′, a �∈ A
T ↑ A τ−→ T ′ ↑ A

Parallel composition “||” is a commutative and associa-
tive operator that combines the behaviour of two compo-
nents by synchronization of the actions common to their
alphabets and interleaving of the remaining actions. For
example, in computing the parallel composition of compo-
nents Writer and Mutex of Figure 1, actions W.acquire and
W.release will each be synchronized.

Formally, let T1 = 〈S1, αT1, R
1, s1

0〉 and T2 =
〈S2, αT2, R

2, s2
0〉 be two LTSs. If either T1 = Π or

T2 = Π, then T1||T2 = Π. Otherwise, T1||T2 is an LTS
T = 〈S, αT,R, s0〉, where S = S1 × S2, s0 = (s1

0, s
2
0),

αT = αT1 ∪ αT2, and R is defined as follows:

T1
a−→ T ′

1, a �∈ αT2

T1||T2
a−→ T ′

1||T2

T1
a−→ T ′

1, T2
a−→ T ′

2, a �= τ

T1||T2
a−→ T ′

1||T ′
2

Properties

A safety property is specified as a deterministic LTS that
contains no τ transitions, and no π state. The set of traces
Tr(P) of property P defines the set of acceptable be-
haviours over αP . An LTS T satisfies P , denoted as T |= P
iff Tr(T ↑ αP) ⊆ Tr(P).

The LTSA automatically derives from a property P an
error LTS denoted Perr, which traps possible violations
with the π state. Formally, the error LTS of a property
P = 〈S, αP,R, s0〉 is Perr = 〈S ∪ {π}, αPerr, R

′, s0〉,
where αPerr = αP and R′ = R ∪ {(s, a, π)|a ∈ αP and
¬∃s′ ∈ S : (s, a, s′) ∈ R}. Note that the error automaton
is complete, i.e., each state (other than the error state) has
outgoing transitions for every action in the alphabet.

For example, Figure 2 illustrates a mutual exclusion
property for a system consisting of the LTSs of Figure 1.

Property False
(all environments)

Property True
(some environments)

+ Assumption

(3) Property Extraction

(2) Backward Error Propagation

(1) Composition and Minimisation

LTSA + Assumption GenerationProperty

Component Property True
(all environments)

Figure 3. Model Checking with Assumption
Generation

The property comprises states 0, 1, 2 and the transitions de-
noted by solid arrows. It expresses the fact that the com-
ponent and its environment should never be in their criti-
cal sections at the same time. In other words, the intervals
defined by their mutual enterCS and exitCS actions should
never overlap. The dashed arrows illustrate the transitions
to the error state that are added to the property to obtain its
error LTS.

Let T be an LTS that has no error traces. To detect vi-
olations of property P by component T , the LTSA com-
putes T ||Perr. It has been proven in [8] that T violates P
iff the π state is reachable in T ||Perr, or equivalently, iff
errTr(T ||Perr) �= ∅. The error state has special treatment
during minimization, so that a violation does not disappear
as a result of abstraction. In fact, an error state within a
component can only disappear with composition, i.e., if a
component with which it interacts blocks the erroneous be-
haviour.

3. Assumption Generation

In this section we describe in detail our proposed exten-
sions to traditional model checking, and their implementa-
tion in LTSA. We also provide a formal proof of correctness.

3.1. General Method

The traditional approach to verifying a property of an
open system (i.e., a software component that interacts with
an environment, represented by other components) is to
check it for all the possible environments. The result of
verification is either true, if the property holds for all the
possible environments, or false, if there exists some envi-
ronment that can lead the component to falsify the property.
We believe that this approach is overly pessimistic and only

E.exitCS

E.release

E.enterCS

0

E.exitCS

E.enterCS E.acquire

E.enterCS

E.enterCS
E.exitCS

E.exitCS

E.release

E.enterCS
τ

π

3

E.acquire

1 2

Figure 4. Composite LTS

appropriate for the analysis of closed systems, where no fur-
ther interaction with the environment is expected. When an-
alyzing open systems, an optimistic view, which assumes a
helpful environment, is more appropriate. Usually, software
components are required to satisfy properties in specific en-
vironments, so it is natural to accept a component if there
are some environments in which the component does not
violate the property.

In our approach, the result of component verification
is also true, if the property holds for all environments.
However, the result is false only if the property is falsi-
fied in all environments. If there exist some environments
in which the component satisfies the property, the result of
verification is not false, as in the traditional approach, but
rather true in environments that satisfy a specific assump-
tion. This assumption, i.e. a property LTS, is automatically
generated and characterizes exactly those environments. In-
tuitively, this environment assumption encodes all possible
“winning strategies” of the environment in a game between
the system, which attempts to get to the error state, and the
environment, which attempts to prevent this. Figure 3 il-
lustrates our approach together with the steps we follow to
build the assumptions (that are described below).

Step 1: Composition and Minimization

Given an open system and a property LTS that may relate
the behaviour of the system with the behaviour of the envi-
ronment, our first step is to compute all the violating traces
of the system for unrestricted environments, and turn into τ
all actions in these traces over which the environment has
no control, i.e., the internal actions of the system. We per-
form this step by building the composition of the system
with the error LTS of the property, and subsequently hiding
the internal actions of the system. The resulting LTS can be
minimized with respect to observational equivalence, since
such minimization preserves traces.

For example, Figure 4 depicts the result of composing
the components depicted in Figure 1 with the mutual exclu-

E.release

E.enterCS E.enterCS
E.releaseE.exitCS E.exitCS

E.acquire E.enterCS

2

π

30

E.exitCS

Figure 5. The Result after Backward Error
Propagation

sion property of Figure 2, after minimization. The internal
actions of the system, i.e. the “W” labelled transitions, were
abstracted to τ .

If the error state is not reachable in this composition, the
property is true in any environment, and this is reported
to the user. Otherwise, we identify whether there exist en-
vironments that can help the system avoid the error in all
circumstances; this is achieved through the following steps.

Step 2: Backward Error Propagation

This step first performs backward propagation of the error
state over τ transitions, thus pruning the states where the
environment cannot prevent the error state from being en-
tered via one or more τ steps. Since we are interested only
in the error traces, we also eliminate the states that are not
backward reachable from the error state. If, as a result of
this transformation, the initial state becomes an error state,
it means that no environment can prevent the system from
possibly reaching the error state, so the property is false (for
all environments) and this is reported to the user.

Consider again the composite system in Figure 4. The
thicker line marks the only τ transition that remains in the
system after minimization. As a result of backward propa-
gation, we identify state 1 with the error state; the result is
shown in Figure 5. The intuition here is that, if the compo-
nent is in a state from which it can violate the property by
some number of internal moves, then no environment can
prevent the violation from occurring.

Step 3: Property Extraction

This step builds the property LTS that is our assumption.
It performs this in two stages; first it builds the error LTS
for the assumption, from which it extracts the correspond-
ing property LTS. Note that the LTS resulting from Step
2 might not be an error LTS, although it contains an error
state. Recall from the background section that the error LTS
is deterministic and complete.

In order to get an error LTS we make the LTS obtained
from step 2 deterministic by applying to it τ elimination and
the subset construction [3], but by taking special care of the
π state as follows. During subset construction, the states

E.release

E.acquire E.enterCS

E.exitCS

E.acquireE.release E.acquire

E.acquire, E.release

E.enterCS, E.exitCS

3 20

θ

Figure 6. Generated Assumption

of the deterministic LTS that is being generated are sets of
states in the original non-deterministic LTS. In our context,
if any one of the states in the set is π, the entire set be-
comes π. Intuitively, a trace that non-deterministically may
or may not lead to an error has to be considered as an error
trace. Such non-determinism reflects the fact that, by per-
forming a particular sequence of actions, the environment
cannot guarantee that the component will avoid error states.

For example, consider again the composite system in
Figure 4. There are two outgoing transitions from the ini-
tial state 0 that are labelled by the same environment action
E.enterCS: one leads to the error state, while the other one
leads to state 1. This means that if the environment per-
forms action E.enterCS, it can not prevent the system from
getting to the error, so we would like to identify state 1 with
π. In our example in Figure 4, this was achieved during
Step 2, but this may not be the case in general.

What remains to be performed at this stage is to make
the resulting LTS complete. Completion is performed by
adding a new “sink” state to the LTS, and adding a transi-
tion to this state for each missing transition in the “incom-
plete” LTS. The missing transitions in the incomplete LTS
represent behaviour of the environment that is never exer-
cised by the open system under analysis. As a result, no
assumptions need to be made about these behaviours. The
sink state reflects exactly this fact, since it poses no imple-
mentation restrictions to the environment.

Once we have the error LTS, we obtain the assumption
by deleting the error state and the transitions that lead to it.
Figure 6 depicts the assumption generated for our example.
Since the result from Step 2 is already deterministic, we get
the assumption by completing it with the sink state, denoted
by θ, and deleting the π state. The assumption expresses the
fact that the environment should only access its critical sec-
tion protected by the mutex. Moreover, as imposed by the
mutex, E.acquire and E.release actions of the environment
can only alternate, and therefore any different behaviour is
inconsequential. Notice for example that from state 0, ac-
tion E.release leads to state θ.

Implementation in the LTSA
As mentioned, the LTSA provides a framework that facili-
tates the introduction of the extensions we have presented.
For example, we took advantage of its support for compo-
sition, abstraction, minimization and determinization. The
extra features that our approach required are:

• Special treatment of the error state, π, during deter-
minization. The special semantics of this state were
not previously taken into account.

• Backwards reachability and error propagation as re-
quired by step 2. We believe that error propagation
should be performed during CRA for increased effi-
ciency, irrespective of our approach.

• Completion with the sink state, θ, and property extrac-
tion from the error LTS.

3.2. Correctness of Approach

Let T denote an open system with alphabet αT and let
E denote another system representing an arbitrary environ-
ment for T , whose alphabet is αE. Let P denote a property
LTS with alphabet αP ⊆ αT ∪ αE (a property may refer
to actions in both T and E).

Let C = αT ∩αE be the set of common actions between
T and E, and let I = αT − C denote the internal actions
of the system.

Our tool generates the property LTS A with alphabet
αA = C ∪ (αP − I), representing the weakest assumption
characterizing all the environments that, composed with the
system, satisfy the property, i.e., E |= A if and only if
E||T |= P .

The following proposition says that the error traces of
Aerr are obtained from the traces in T ||Perr that may lead
to an error state, from which we remove the actions not
present in αA.

Proposition 3.1 errTr(Aerr) = {σ ∈ αA∗|∃σ′ ∈
errTr(T ||Perr) ∧ σ = σ′ � αA}.

The following theorem makes precise the claim that A is
the weakest assumption about the environment E of T that
ensures property T .

Theorem 3.2 ∀E, E |= A if and only if E||T |= P.

Proof.

• ∀E such that E |= A, we have to show that E||T |= P .
The proof is by contradiction.

Assume E||T �|= P . Then, there is a trace σ in
E||T ||Perr that leads to the error state (i.e., σ ∈
errTr(E||T ||Perr)). We use σ to build a trace σ′ ∈

Tr(E) such that σ′ � αA ∈ errTr(Aerr), thus con-
tradicting E |= A.

Since σ is an error trace in E||T ||Perr, it follows
that σ � αE ∈ Tr(E) and σ � (αT ∪ αP) ∈
errTr(T ||Perr). ¿From proposition 3.1, it follows
that (σ � (αT ∪ αP)) � αA ∈ errTr(Aerr).

Since αA ⊆ αE and αA ⊆ αT ∪ αP , we also have
that (σ � αE) � αA = (σ � (αT ∪ αP)) � αA. Let
σ′ = σ � αE. We then have that σ′ � αA = (σ �
(αT ∪ αP)) � αA ∈ errTr(Aerr), and thus we have
a contradiction.

• ∀E such that E||T |= P , we have to show that E |= A.
Again, we prove this by contradiction.

Assume E �|= A. Then, there is a trace σ ∈
Tr(E) such that σ � αA ∈ errTr(Aerr). ¿From
proposition 3.1, it follows that there is a trace σ′ ∈
errTr(T ||Perr) such that σ � αA = σ′ � αA. We use
σ and σ′ to build a trace σ′′ in E||T ||Perr such that
σ′′ � αP ∈ errTr(Perr), thus reaching the contradic-
tion of E||T |= P .

Since σ is a trace of E, σ′ is a trace of T ||Perr, σ �
αA = σ′ � αA and C ⊆ αA it follows that σ and
σ′ may differ only on non-common actions. It follows
that there exists a trace σ′′ in E||T ||Perr such that σ′′ �
αE = σ and σ′′ � (αT ∪ αP) = σ′. (we build σ′′

by “composing” σ and σ′ using the same rules as for
parallel composition of systems).

Since σ′ ∈ errTr(T ||Perr), it follows that σ′ � αP ∈
errTr(Perr). We also have σ′′ � αP = σ′ � αP ,
since σ may introduce in σ′′ only actions that are not
present in αA or αP . It follows that σ′′ � αP ∈
errTr(Perr), and thus we have a contradiction.

�

4. Application: the Rover Executive

We experimented with our approach in the context of
the verification of the executive subsystem for the K9 Mars
Rover, developed at NASA Ames. The executive receives
flexible plans from a Planner, which it executes according
to the plan language semantics. A plan is a hierarchical
structure of actions that the Rover must perform. Tradition-
ally, plans are deterministic sequences of actions. However,
increased Rover autonomy requires added flexibility. The
plan language therefore allows for branching based on state
or temporal conditions that need to be checked, and also for
flexibility with respect to the starting time of an action. The
plan language allows the association of each action with a
number of state or temporal pre-, maintenance, and post-
conditions, which must hold before, during, and on com-
pletion of the action execution, respectively.

The executive has been implemented as a multi-threaded
system, made up of a main coordinating component named
“Executive”, components for monitoring the state condi-
tions “ExecCondChecker”, and temporal conditions “Exec-
TimerChecker” - each further decomposed into two threads
- and finally an “ActionExecution” thread that is responsi-
ble for issuing the commands to the Rover. Synchronization
between these threads is performed through mutexes and
condition variables. The developers provided some design
documents to us, which described the synchronization be-
tween these components in an add-hoc flowchart-style lan-
guage. They looked very much like LTSs, which allowed us
to translate them in a straightforward and systematic, albeit
manual, way into FSP for the LTSA.

We first checked the occurrence of race conditions for
the case of a variable of the ExecCondChecker shared with
the Executive. We checked the property on the ExecCond-
Checker (that consists internally of two threads) together
with the mutexes it uses, since mutexes constitute the syn-
chronization mechanism in this system. The ExecCond-
Checker with mutexes and the property had 426 states but
minimized to 18 states. The propagation of the error state
produced an LTS of just 10 states, and the final assumption
generated had 12 states (one being the sink state). We were
surprised to see that our approach did not generate the ex-
pected assumption, i.e. that accesses to the shared variable
by the environment must be protected by the appropriate
mutex, as in the example of Section 3. In fact, the assump-
tion obtained was weaker. It reflected the knowledge that,
once the environment holds the mutex, the values that the
environment reads reflect changes that only the environment
may have made. For example, assume that, while holding
the mutex, the environment assigns value x to the variable.
Reading any value x′ �= x would lead the environment to
the sink state, because this behaviour will never actually be
exercised in the context of the ExecCondChecker.

The second property that we checked in this fashion
was one that the developer thought might be violated by
the code, but could actually not produce an execution that
would demonstrate this fact. For a specific variable of the
ExecCondChecker shared with the Executive, the property
stated the following: if the Executive reads the value of the
variable, then the ExecCondChecker should not read this
value until the Executive clears it first. Again, we used the
ExecCondChecker together with mutexes and the property
to generate an assumption on the behaviour of the Exec-
utive. The result had 524 states, minimized to 9 states, re-
duced to 7 states with error propagation, and to 6 states with
determinization. The resulting assumption had 7 states (in-
cluding the sink state). It stated that the environment of the
component should read the variable after acquiring a mutex,
and should hold on to that mutex until it clears the variable.
Note that, again, there were transitions to the sink state, ex-

pressing the fact that some behaviour of the environment is
never exercised. For example, the assumption made clear
that the ExecCondChecker only updates the variable with
values larger than the one it currently holds.

The assumption generated was satisfied by the design
level Executive. Our result gave confidence to the devel-
opers about the correctness of their design and implementa-
tion. They also found it useful to be able to understand how
the property decomposes across modules of the system.

5. Discussion

The complexity bottleneck of our approach is the deter-
minization step, which, in the worst case, is exponential in
the number of the states of the given LTS. There are sev-
eral reasons that lead us to believe that this may not be the
case often in practice. In our experiments such as the Rover
study reported in Section 4, non-determinism almost disap-
pears by propagation of the error state. As we only study
modules of a larger system, we expect that the state space
of these modules will be relatively small. This will be the
case in particular when they interact through limited inter-
faces with their environment, which will allow the mini-
mization step to considerably reduce their behaviour. Note
also that, if we extend our results to other frameworks, the
assumption may not be required to be deterministic. Admit-
tedly, however, deterministic assumptions tend to be clearer
to understand.

From our extensive experience with compositional
reachability analysis (CRA) techniques, we are only too
aware of the potential intermediate state explosion associ-
ated with them [18]. This problem describes the fact that,
in lack of a context, a component may exhibit an exces-
sively large state-space. However, this does not occur in
the general case for well-designed software architectures.
Moreover, several approaches have been proposed in the lit-
erature [18, 7, 26] for addressing the problem.

Our approach extends the LTSA tool in several useful
ways. First of all, it achieves further reduction of compo-
nent behavior by applying propagation of the error states,
a computationally inexpensive but efficient step. Moreover,
our approach generates the weakest environment assump-
tions. As such, these assumptions may be used for run-
time monitoring, or for component retrieval, capabilities
that were not formerly provided by the tool.

As far as component retrieval is concerned, we would
like to stress the following observation from our experi-
ments (Section 4). The sink state that our assumptions con-
tain, reflects the fact that some services that a component
provides will never be used in the context of a system. Our
assumptions allow free implementations for these services,
and simply ensure that the used services comply with the
requirements.

The ability to generate assumptions also opens up a num-
ber of other interesting research directions: we mention a
few to give some flavour.

• Assumptions may be further analyzed. Assume that a
component does not violate a property in any environ-
ment. However, it may be that, when put in the context
of the weakest assumption that our algorithms gener-
ate, no useful behavior is obtained as a result. In the
extreme, the component with the assumption may re-
sult in a single deadlock state. Or the assumption may
be that the environment will hold on to a specific lock
for ever. All these are indications that there is some-
thing inherently wrong with the behavior of the com-
ponent under analysis.

• Our work has been performed with a limited but im-
portant set of properties (safety) expressed within a
specific framework that facilitates the development of
our algorithms. However, we believe our approach has
application in other frameworks. In particular, we are
investigating the extension of our approach for the case
of fairness and/or liveness properties, which requires a
more expressive formalism.

• When the behavior of the environment, or part thereof,
is provided, we wish to find effective ways of discharg-
ing assumptions on the environment. One way would
be to use the assumption as a property, and model
check in the same fashion components in the environ-
ment. This process can be seen as a way of decompos-
ing, automatically, a property across components of a
system. Indeed, an assumption reflects those aspects of
the property that have not been satisfied by the compo-
nent and that remain to be satisfied by its environment.
Property decomposition is an extremely difficult prob-
lem, and our approach may be seen a helpful step in
its facilitation. Of course, such decomposition will not
be effective in all cases. It is easy to imagine that there
will be cases where assumptions may gradually grow
in size during this process, a problem referred to in the
literature as “property explosion”.

• Our approach to assumption generation can straight-
forwardly be used for submodule construction, where
the submodule is placed as an interacting component
in parallel with the given one. Generalization to other
forms of composition is a natural step, e.g. find a pro-
gram context for the given component to achieve the
desired property in some appropriate environment.

6. Related Work

For over three decades now, there has been research ef-
fort focused on finding tractable approaches to the formal

specification, design and development of complex systems.
Significant early progress occurred with techniques and
tools for sequential, non-interacting or transformational,
systems. However, the quest for obtaining effective meth-
ods and tools for the formal support of compositional and/or
modular development and reasoning for reactive systems
still remains, in our view, a major challenge. As there is
insufficient space to do justice to the work that has been un-
dertaken, we refer the interested reader to the proceedings
[14] - its introductory chapter in particular [12] - and the
recent book [13].

In more recent years with the development and take-up
of OO-design technology, formal techniques for support of
component-based design is also gaining prominence, see
for example [10, 11], for which modular-based reasoning
is key. The work of Inverardi and colleagues, see [22] and
[21] for example, has also been aimed at providing support
for the modular checking of certain properties, as deadlock
freedom, but is somewhat limited in the checks performed
for compatibility between components.

In order to make progress in any of these areas, some
form of assumption (either implicit or explicit) about the in-
teraction with, or interference from, the environment has to
be made, [23, 2]. Even though we have sound and complete
reasoning systems for such rely-guarantee (or assumption-
commitment) style of reasoning, see for example [24, 39]
and most recently [41], it is always a mental challenge to
obtain the most appropriate assumption (if there is such). It
is even more of a challenge to find automated techniques to
support this reasoning style - the thread modular reasoning
underlying the Calvin tool [16] is one start in this direction.
In the framework of temporal logic, the work on Alternating
time Temporal Logic ATL (and transition systems) [5] was
proposed for the specification and verification of open sys-
tems together with automated support via symbolic model
checking procedures, albeit of rather high complexity; the
Mocha toolkit [4] provides support for modular verification
of components with requirement specification based on the
ATL. It goes without saying that if tool support is lacking,
take-up of these techniques will be rather low.

The underlying approach to automated assumption gen-
eration that we’ve adopted and implemented in LTSA has
similarity to a number of other problems that have been
considered by a number of researchers over the past two
decades. Closest to our our work in the software engineer-
ing and concurrency theory are the “sub-module construc-
tion problem”, “scheduler synthesis” and “interface equa-
tion solving” problems. In the discrete event community,
it appears as the “supervisory control” problem, in control
theory there is the “model matching” problem and in the
logic synthesis world there is the “interacting FSM synthe-
sis”. Of course, the particular frameworks in which these
problems are considered makes all the difference to their

solution(s) and as such it would be quite inappropriate to
claim they are solving the same problem. However, in very
general terms, each can be seen as an instance of the fol-
lowing problem, given a component, C, and a desired be-
haviour, B, find a context for C, X , such that X(C) ≡ B,
for some appropriate notion of equivalence.

Merlin and Bochmann [33] were probably the first to ad-
dress the above as submodule construction in the world of
communication protocol specification and synthesis. In a
setting of labelled transition systems, given a module spec-
ification M0 and a submodule specification M1, they out-
lined and exemplified a manual approach to construct an
interacting submodule M2 such that M1 and M2 together
achieve the desired specification of M0. Their construc-
tion has much in common with ours although some signif-
icant aspects of the construction were left to the reader’s
imagination. The later work of [38, 19] has revisited the
Merlin-Bochmann approach and provided new, detailed, al-
gorithms for the sub-module construction and implemented
an automated tool. One recognized limitation of the Merlin-
Bochmann is that the notion of correctness, namely just
trace equivalence, does not capture a number of behavioural
properties, e.g. potential deadlock.

The work of Shields [37], over a decade later, introduces
the “Interface Equation” in the setting of the process alge-
bra, CCS [34], under observational equivalence. In order
to solve (C|X)\L = B for the process X , he restricts to
cases where B is deterministic, with some minor restric-
tions on the sorts of C and B, and provides necessary and
sufficient conditions for a solution to exist and then in such
situations presents an explicit construction. Parrow [35]
also addressed the interface equation and presented a pro-
cedure for solving the equations via successive transforma-
tion of the CCS equations to simpler ones, generating a so-
lution along the way; his approach is based upon a tableau
method. Parrow’s method attempts to find a most general
solution, but even if it exists, it is not necessarily appropri-
ate for implementation. Continuing in the process algebra
framework, Larsen and Xinxin [28] consider the more gen-
eral problem of solving a system of equations Ci(X) � Pi,
for 0 < i ≤ n, where the Ci are arbitrary contexts, Pi are
arbitrary processes and X is the process to be found - the
equivalence is taken as bisimulation. They considered the
problem in the context of disjunctive modal transition sys-
tems, [27] and implemented an automated tool for solving
the equations (in the finite state case) when a solution exists.

As stated above, there is a further body of work in super-
visory control synthesis, discrete event systems, and logic
synthesis areas, see for example [1, 15, 40, 25, 6]. However,
we should stress that whilst these approaches are in general
set in a FSM/DFA context, the principal goal is quite differ-
ent in comparison with ours.

7. Conclusions

We presented an approach to model checking compo-
nents as open, rather than closed systems. Our approach
reports whether there is something inherently wrong with
the component behaviour, or whether satisfying a require-
ment is simply a matter of providing the right environment.
Moreover, it characterizes exactly all helpful environments.

The possibility of generating assumptions provides in-
creased flexibility in model checking, and opens up a num-
ber of interesting research topics. It allows, for example,
the discharge of assumptions at run-time for unpredictable
environments, the retrieval of components focused on only
relevant aspects of their behaviour, or the decomposition
of properties across components. It remains to further in-
vestigate how useful our approach is in practice. Open re-
search issues include optimizations and extensions for fair-
ness/liveness properties and other frameworks. However,
our early experiments with real case studies provide strong
evidence in favour of this line of research.

References

[1] A. Aziz, F. Balarin, R. K. Brayton, M. D. Dibenedetto, A.
Sladanha, and A. L. Sangiovanni- Vincentelli. Supervisory
control of finite state machines. In 7th Int. Conference on
Computer Aided Verification, volume 939 of Lecture Notes
in Computer Science, Liège, Belgium. Springer Verlag.

[2] M. Abadi and L. Lamport. Composing specifications.
ACM Transactions on Programming Languages and Sys-
tems, 15(1):73–132, January 1992.

[3] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Introduction to
Automata Theory, Languages, and Computation. Addison-
Wesley, 2000.

[4] R. Alur, T. Henzinger, F. Mang, S. Qadeer, S. Rajamani,
and S. Tasiran. Mocha: Modularity in model checking. In
Proceedings of 10th International Conference on Computer
Aided Verification, volume 1427 of Lecture Notes in Com-
puter Science, pages 521–525. Springer Verlag, 1998.

[5] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-
time temporal logic. In de Roever et al. [14], pages 23–60.

[6] S. Balemi, G. Hoffmann, P. Gyugyi, H. Wong-Toi, and
G. Franklin. Supervisory control of a rapid thermal mul-
tiprocessor. IEEE Transactions on Automatic Control,
38(7):1040–1059, July 1993.

[7] S. Cheung and J. Kramer. Context constraints for composi-
tional reachability analysis. ACM Transactions on Software
Engineering and Methodology, 5(4):334–377, 1996.

[8] S. Cheung and J. Kramer. Checking safety properties using
compositional reachability analysis. ACM Transactions on
Software Engineering and Methodology, 8(1):49–78, 1999.

[9] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT Press, 2000.

[10] L. de Alfaro and T. Henzinger. Interface automata. In Proc.
of the Joint 8th European Software Engineering Conference
and 9th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering. ACM Press, 2001.

[11] L. de Alfaro and T. Henzinger. Interface theories for
component-based design. In Proceedings of EMSOFT 01:
Embedded Software, volume 2211 of Lecture Notes in Com-
puter Science, pages 148–165. Springer Verlag, 2001.

[12] W.-P. de Roever. The need for compositional proof systems:
A survey. In de Roever et al. [14], pages 1–22.

[13] W.-P. de Roever, F. de Boer, U. Hanneman, J. Hooman,
Y. Lakhnech, M. Poel, and J. Zwiers. Concurrency Verifica-
tion: Introduction to Compositional and Non-compositional
Methods. Cambridge University Press, 2001.

[14] W.-P. de Roever, H. Langmaack, and A. Pnueli, editors.
Compositionality: The Significant Difference - An Interna-
tional Symposium, COMPOS’97, volume 1536 of Lecture
Notes in Computer Science. Springer-Verlag, 1997.

[15] M. di Benedetto and A. Sangiovanni-Vincentelli. Model
matching for finite-state machines. IEEE Transactions on
Automatic Control, 46(11):1726–1743, November 2001.

[16] C. Flanagan, S. Freund, and S. Qadeer. Thread-modular ver-
ification for shared-memory programs. In Proceedings of the
European Symposium on Programming, 2002.

[17] D. Giannakopoulou, J. Kramer, and S. Cheung. Analysing
the behaviour of distributed systems using Tracta. Journal
of Automated Software Engineering, special issue on Auto-
mated Analysis of Software, 6(1):7–35, 1999.

[18] S. Graf, B. Steffen, and G. Lüttgen. Compositional minimi-
sation of finite state systems using interface specifications.
Formal Aspects of Computation, 8, 1996.

[19] E. Haghverdi and H. Ural. Submodule construction from
concurrent system specifications. Information anbd Soft-
ware Technology, 41:499–506, 1999.

[20] K. Havelund and G. Rosu. Monitoring Java programs with
Java PathExplorer. In First Workshop on Runtime Verifica-
tion (RV’01), volume 55(2) of Electronic Notes in Theoreti-
cal Computer Science, Paris, France, 2001.

[21] P. Inverardi and S. Scriboni. Connectors synthesis for
deadlock-free component based architectures. In Proceed-
ings of 16th IEEE Annual International Conference on Au-
tomated Software Engineering, pages 174–181, 2001.

[22] P. Inverardi, A. Wolf, and D. Yankelevich. Static check-
ing of system behaviors using derived component assump-
tions. ACM Transactions on Software Engineering Methods,
9(3):239–272, July 2000.

[23] C. Jones. Specification and design of (parallel) programs. In
R. Mason, editor, Information Processing 83: Proceedings
of the IFIP 9th World Congress, pages 321–332. IFIP: North
Holland, 1983.

[24] C. Jones. Tentative steps towards a development method for
interfering programs. ACM Transactions on Programming
Languages and Systems, 5(4):596–619, 1983.

[25] S. Khatri, A. Narayan, S. Krishnan, K. McMillan, R. Bray-
ton, and A. Sangiovanni-Vincentelli. Engineering change
in a non-deterministic FSM setting. In Proceedings of 33rd
IEEE/ACM Design Automation Conference, 1996.

[26] J.-P. Krimm and L. Mounier. Compositional state space
generation from LOTOS programs. In E. Brinksma, editor,
3rd International Workshop on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’97), volume
1217 of Lecture Notes in Computer Science, Enschede, The
Netherlands, 1997. Springer.

[27] K. Larsen and B. Thomsen. A modal process logic. In Pro-
ceedings of the IEEE/ACM Conference on Logic in Com-
puter Science, LICS’88, 1988.

[28] K. Larsen and L. Xinxin. Equation solving using modal tran-
sition systems. In Proceedings of the IEEE/ACM Conference
on Logic in Computer Science, LICS’90, 1990.

[29] J. Magee, N. Dulay, and J. Kramer. Regis: A constructive
development environment for parallel and distributed pro-
grams. Distributed Systems Engineering Journal, Special
Issue on Configurable Distributed Systems, 1(5):304–312,
1994.

[30] J. Magee and J. Kramer. Concurrency: State Models & Java
Programs. John Wiley & Sons, 1999.

[31] J. Magee, J. Kramer, and D. Giannakopoulou. Behaviour
analysis of software architectures. In 1st Working IFIP Con-
ference on Software Architecture (WICSA1), San Antonio,
TX, USA, 1999.

[32] J. Magee, N. Pryce, D. Giannakopoulou, and J. Kramer.
Graphical animation of behavior models. In 22d Interna-
tional Conference on Software Engineering (ICSE 2000),
Limerick Ireland, 2000. ACM.

[33] P. Merlin and G. V. Bochmann. On the construction of sub-
module specification and communication protocols. ACM
Transactions on Programming Languages and Systems, 5:1–
25, 1983.

[34] R. Milner. Communication and Concurrency. Prentice-Hall,
1989.

[35] J. Parrow. Submodule construction as equation solving CCS.
Theoretical Computer Science, 68:175–202, 1989.

[36] C. Păsăreanu, M. Dwyer, and M. Huth. Assume-guarantee
model checking of software: A comparative case study. In
D. Dams, R. Gerth, S. Leue, and M. Massink, editors, Theo-
retical and Practical Aspects of SPIN Model Checking, vol-
ume 1680 of Lecture Notes in Computer Science, pages 168–
183. Springer-Verlag, 1999.

[37] M. Shields. A note on the simple interface equation. The
Computer Journal, 32(5):399–412, 1989.

[38] D. P. Sidhu and J. Aristizabal. Constructing submodule
specifications and network protocols. IEEE Transactions on
Software Engineering, 14(11):1565–1577, November 1988.

[39] K. Stølen. A method for the development of totally correct
shared-state parallel programs. In J. Baeten and J. Groote,
editors, Proceedings of Concur’91, volume 527 of Lecture
Notes in Computer Science. Springer Verlag, 1991.

[40] E. Tronci. Automatic synthesis of controllers from formal
specifications. In Proc. of 2nd IEEE Int. Conf. on Formal
Engineering Methods, Brisbane, Australia, 1998.

[41] Q. Xu, W.-P. de Roever, and J. He. The rely-guarantee
method for verifying shared variable concurrent programs.
Formal Aspects of Computing, 9(2):149–174, 1997.

